A termording free variation of Möller algorithm

Teo Mora
DIMA- Università di Genova, Genova, Italy
a joint work with
Michela Ceria
DMMM, Polytechnic University of Bari, Bari, Italy

Abstract

This paper is part of a series of articles in the context of Degröbnerization $[5,6,2,7,8,9]$ and is devoted to give the best version of the original Möller Algorithm [13] proceeding by induction on the points ${ }^{1}$ of which we presented in ACA2023 [2] and ISSAC'22 [5] a version available for each ideal defined by (not necessarily commutative) functionals over any effective ring.

Gröbner bases's theory plays an important role in Computer Algebra and many applications have been solved by considering them as a preprocessing, and saying "if we have the Gröbner basis, then the problem is easily solved". This is undoubtedly true, but it does not take into account that finding a Gröbner basis is not always an easy task.

Luckily, there are practical problems for which Gröbnerian technology is not the only way to get a solution, and this allows us to switch to a new paradigm: Degröbnerization [2].

Such paradigm consists in - using linear algebra and combinatorial methods instead of Gröbner basis computation and Buchberger's reduction and - completely change perspective in the algebraic representation of our problems, substituting the Gröbnerian technology representation, based on polynomial ideals, to a representation given by quotient algebras expressed via a vector-space basis and multiplication (Auzinger-Stetter) matrices [1]. We recall that classical Möller Algorithm \diamond takes as input a set of functionals ordered in such a way that each initial segment defines a zero-dimensional ideal thus producing a Macaulay chain [17] of such ideal, \diamond which is easily produced for a 0 -dimensional ideal of polynomials;

[^0]\diamond produces for each ideal in the Macaulay chain not only its representation as a quotient algebra expressed via a vector-space and Auzinger-Stetter multiplication matrices [1],
\diamond but also triangular and separator polynomials can be derived as well as the transformation matrix linking them
\diamond and requires at most the evalauation of each such functional to each term needed to express the wanted vector-space basis.
The new aspect of this reformulation is that the present version is completely free with respect to term-orderings and can be applied using any total ordering (not necessarily a semigroup one) for ordering the terms needed to express the wanted results; actually we can apply it to any finite set \mathbf{T} of terms with the only requirement that 1 be connected to $\mathbf{T}[18,19,20]$.

What oriented our investigation towards a version of the algorithm which at the same time does not require a semigroup ordering and that covers a wide class of algebras was our intention to apply Degröbnerization techniques in the context of Algebraic Statistics. This required us a careful reading of [3], which is the strongest supporter of the application of both Gröbnerian technology and BuchbergerMöller Algorithm toward Algebraic Statistics and where we read

- Another class of statistical models we shall consider are linear models whose vector space basis is formed by polynomials which are not monomials;
- Example 7 is not a corner cut ${ }^{2}$ model. However, it is the most symmetric of the models in the statistical fan. In fact, to destroy symmetry is a feature of Gröbner basis computation, as term orderings intrinsically do not preserve symmetries, which are often preferred in statistical models .
Example 7 of [3] consists in considering as functionals the evaluation of the 5 ordered points

$$
\mathcal{F}=\{(0,0),(1,-1),(-1,1),(0,1),(1,0)\} \subset \mathbb{Q}^{2}
$$

and produce the desired data w.r.t. the algebra

$$
\operatorname{Span}_{\mathbb{Q}} \mathbf{T} \equiv \mathcal{P} / \mathbb{I}(\mathcal{F}) .
$$

where we are denoting $\mathcal{P}:=\mathbb{Q}\left[x_{1}, x_{2}\right]$,

$$
\mathbb{I}(\mathcal{F}):=\left\{f\left(x_{1}, x_{2}\right) \in \mathcal{P}: f(a, b)=0,(a, b) \in \mathcal{F}\right\},
$$

\mathbf{T} the ordered set of terms

$$
\mathbf{T}:=\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}\right\} .
$$

Our algorithm produces the desired symmetric basis $\mathcal{B}=\left\{x^{3}-\right.$ $x, x^{2} y-1 / 2 x^{2}+1 / 2 x+1 / 2 y^{2}-1 / 2 y, y^{3}-y, x y-1 / 2 x+1 / 2 y^{2}-$ $\left.1 / 2 y+1 / 2 x^{2}, x y^{2}-1 / 2 x-1 / 2 y^{2}+1 / 2 y+1 / 2 x^{2}\right\}$.

[^1]
Keywords

Möller algorithm, Algebraic Statistics Degröbnerization

References

[1] Auzinger W., Stetter H.J., An Elimination Algorithm for the Computation of all Zeros of a System of Multivariate Polynomial Equations, I.S.N.M. 86 (1988), 11-30, Birkhäuser
[2] Ceria M., Lundqvist S., Mora T., Degrb̈nerization: a political manifesto, Applicable Algebra in Engineering, Communication and Computing, 33 (6), $675-723,(2022)$.
[3] Pistone G., Riccomagno E., Rogantin M.P., Methods in Algebraic Statistics for the Design of Experiments. In: Pronzato, L., Zhigljavsky, A. (eds) Optimal Design and Related Areas in Optimization and Statistics. Springer Optimization and Its Applications, 28, Springer, New York, NY, (2009).
[4] Ceria M., Mora T., Visconti A., Degroebnerization for data modelling problems, abstract for ACA23.
[5] Ceria M., Mora T., A Degroebnerization Approach to Algebraic Statistics, ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic ComputationJuly 2022Pages 419-428
[6] Ceria, M., Lundqvist, S., Mora, T., Degröbnerization and Its Applications: Reverse Engineering of Gene Regulatory Networks CEUR Workshop Proceedings of the 6th International Workshop on Satisfiability Checking and Symbolic Computation, Vol.3273, p. 27-30, 2022.
[7] Mora T. slides available at https://drive.google.com/file/d/1NlbiEehGGWIbWcbsypYNFY0oknpexpbL/view?usp=sharing
[8] Mora T. slides available at https://drive.google.com/file/d/1ye4P7WrBphbRk1S1ncbdBxgxxPFb1IWw/view?usp=sharing
[9] slides available at
https://drive.google.com/file/d/1QKobQNLFlvmMtX6n9ZPyjG382dVKdJ0/view?usp=sharing
[10] Cerlienco L., Mureddu M., Algoritmi combinatori per l'interpolazione polinomiale in dimensione ≥ 2, Publ. I.R.M.A. Strasbourg, 1993, 461/S24 Actes 24^{e} Séminaire Lotharingien, p.39-76.
[11] Cerlienco L., Mureddu M., From algebraic sets to monomial linear bases by means of combinatorial algorithms, Discrete Math. 139, 73-87.
[12] Cerlienco L., Mureddu M., Multivariate Interpolation and Standard Bases for Macaulay Modules, J. Algebra 251 (2002), 686 - 726.
[13] Marinari, M.G., Möller, H.M., Mora, T., Gröbner bases of ideals defined by functionals with an application to ideals of projective points, Applicable Algebra in Engineering, Communication and Computing 4(2), 103-145 (1993)
[14] Buchberger B., Möller H.M., The construction of multivariate polynomials with preassigned zeros, European Computer Algebra Conference, 24-3, Springer, 1982.
[15] Mora T., Robbiano L., Computational Algebraic Geometry and Commutative Algebra, Cortona-91, 34, 106-150, 1993, Cambridge University Press.
[16] Abbott J., Bigatti A, Kreuzer M., Robbiano L., Computing ideals of points, Journal of Symbolic Computation, 30(4), 341-356, Elsevier, 2000
[17] M.E. Alonso, M.G. Marinari, M.T. Mora, The Big Mother of All the Dualities, II: Macaulay Bases. J. AAECC 17, 409-451 (2006).
[18] Mourrain B. A New Criterion for Normal Form Algorithms. In: Fossorier M., Imai H., Lin S., Poli A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin, Heidelberg (1999)
[19] Mourrain B., Bezoutian and quotient ring structure J. Symb. Comp. 39 (2005), 397-415
[20] Mourrain B., Trebuchet P., Solving projective complete intersection faster, Proc. ISSAC'00 (2000), 234-241, ACM

[^0]: ${ }^{1}$ in opposite to Buchberger-Möller Algorithm [15-17] which proceeds by induction on terms.

[^1]: ${ }^{2}$ Recall that a Monomial Basis of a 0-dimensional ideal of polynomials which is Hierarchical, i.e. an order ideal, is called a Corner Cut when it is the Gröbner escalier/normal set modulo the Gröbner basis of such ideal w.r.t. a term ordering.

